++
Thyroid hormone is essential for normal development, especially of the CNS. In the adult, thyroid hormone maintains metabolic homeostasis and influences the functions of virtually all organ systems. Thyroid hormone contains iodine, which must be supplied by nutritional intake. The thyroid gland contains large stores of thyroid hormone in the form of thyroglobulin. These stores maintain adequate systemic concentrations of thyroid hormone despite significant variations in iodine availability and nutritional intake. The thyroidal secretion is predominantly the prohormone T4, which is converted in the liver and other tissues to supply the plasma with the active form, T3. Local activation of T4 also occurs in target tissues (e.g., brain and pituitary) and is increasingly recognized as an important regulatory step in thyroid hormone action. Similarly, local deactivation of T3 is an important regulatory step. Serum concentrations of thyroid hormones are precisely regulated by the pituitary hormone TSH in a negative-feedback system. The predominant actions of thyroid hormone are mediated via nuclear TRs that modulate the transcription of specific genes.
++
Overt hyperthyroidism and hypothyroidism, thyroid hormone excess and deficiency, respectively, are associated with numerous clinical manifestations. Milder disease often has a subtler clinical presentation and may be identified based solely on abnormal biochemical tests of thyroid function. Maternal and neonatal hypothyroidism, due to iodine deficiency, remains a major preventable cause of intellectual disability worldwide (Zimmermann, 2009). Treatment of the hypothyroid patient consists of thyroid hormone replacement (Biondi and Wartofsky, 2014). Treatments for hyperthyroidism include antithyroid drugs to decrease hormone synthesis and secretion, destruction of the gland by the administration of radioactive iodine, and surgical removal (Brent, 2008). In most patients, disorders of thyroid function can be either cured or controlled.
++
Likewise, thyroid malignancies are most often localized and resectable (Haugen et al., 2016; Haugen and Sherman, 2013). Metastatic disease often responds to radioiodine treatment but may become highly aggressive. Radioiodine-refractory, progressive thyroid cancers may respond to targeted chemotherapies, such as tyrosine kinase inhibitors.
++
Abbreviations
CYP: cytochrome P450
Dio1, Dio2, and Dio3: deiodinase types 1, 2, and 3
DIT: diiodotyrosine
ERK: extracellular signal-regulated kinase
GPCR: G protein-coupled receptor
HOI: hypoiodous acid
IGF-1: insulin-like growth factor 1
IP3: inositol 1,4,5-trisphosphate
KISS: potassium iodide (KI) saturated solution
LDL: low-density lipoprotein
MAP kinase: mitogen-activated protein kinase
MCT: monocarboxylic acid transporter
MEK: MAP kinase kinase
MHC: myosin heavy chain, isoform α or β
MIT: monoiodotyrosine
MTC: medullary thyroid carcinoma
NIS: sodium iodide symporter
NO: nitric oxide
NTRK: gene family coding for neutrophic tyrosine receptor kinases (TRKs)
OATP1C1: solute carrier organic anion transporter family, member 1C1
PLC: phospholipase C
RAIU: radioactive iodine uptake
RET: rearranged during transfection tyrosine protein kinase
rT3: reverse T3
T3: 3,5,3′-triiodothyronine
T4: thyroxine
TBG: thyroxine-binding globulin
TR: thyroid hormone receptor
TRH: thyrotropin-releasing hormone
...