Skip to Main Content

++

INTRODUCTION

++

Since its introduction in the early 1980s, propofol has been a cornerstone of anesthetic practice. Propofol is an intravenous anesthetic used for the induction and maintenance of general anesthesia and for sedation in and outside of the operating room.

++

STRUCTURE AND FORMULATION

++

The structure of propofol is 2, 6-diisopropylphenol (Figure 53-1). As an alkylphenol derivative, propofol exists as an oil at room temperature. Because it is highly lipophilic and insoluble in aqueous solution, propofol is formulated in a rather complicated 1% (10 mg/mL) lipid solution, containing 10% soybean oil, 2.25% glycerol, 1.2% purified egg phosphatide, and 0.0005% sodium edetate (antimicrobial).

++
FIGURE 53-1

Structure of propofol.

Graphic Jump Location
++

The incidence of anaphylactic reactions to propofol is around 1:20 000, but more common in patients with eczema and/or multiple food allergies. Common clinical practice is to avoid administering propofol to patients with soybean, peanut, and egg allergies due to its formulation with similar products. Despite this “clinical wisdom,” most egg allergies are to egg protein (whites) rather than the egg phosphatide (yolk) that makes up the propofol solution. Avoiding the use of propofol in those with egg allergy may not be warranted.

++

PHARMACOKINETICS

++

Propofol has a very favorable pharmacokinetic profile (Table 53-1). After a single bolus injection, it is quickly redistributed and eliminated. It is rapidly metabolized in the liver by conjugation to glucuronide and sulfate to produce inactive water-soluble compounds that are excreted by the kidneys. Clearance of propofol exceeds liver metabolism, suggesting extra-hepatic metabolism. This fact is confirmed during the anhepatic phase of liver transplant surgery. The kidneys account for roughly 30% of total body clearance. The lungs have also been implicated in propofol metabolism and are responsible for 30% uptake and first-pass metabolism after bolus dose. Propofol exhibits concentration-dependent inhibition of cytochrome P450, specifically CYP 3A4. It may alter metabolism of other drugs that are metabolized by this system, such as opiates and midazolam, which are both often coadministered during induction.

++
Table Graphic Jump Location
TABLE 53-1   Pharmacokinetic Profile for Propofol 
++

Fospropofol (phosphono-O-methyl 0-2, 6-diisopropylphenol) is a prodrug of propofol with a slightly longer time to peak effect and a prolonged effect. Fospropofol undergoes hydrolysis by ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessAnesthesiology Full Site: One-Year Subscription

Connect to the full suite of AccessAnesthesiology content and resources including procedural videos, interactive self-assessment, real-life cases, 20+ textbooks, and more

$995 USD
Buy Now

Pay Per View: Timed Access to all of AccessAnesthesiology

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.