Skip to Main Content


  1. The mechanisms by which the inhaled general anesthetics work are not fully understood. No single molecular target has been proven to transduce anesthesia.

  2. Correlation of the physicochemical character of anesthetics with their potency suggests that target sites are dominantly hydrophobic, with a small degree of polarity and chirality. Internal or interfacial protein cavities best fit this description.

  3. Inhaled anesthetic binding site character is not highly specific, predicting more than a few anesthetic binding targets. The interaction at some of these targets may not contribute significantly to anesthetic action but may contribute to side effects.

  4. Use of the lipid membrane as a direct target for inhaled anesthetics has been dismissed prematurely. Some components of anesthetic action may occur via this interaction.

  5. Many potential protein targets in the synapse have been identified, suggesting that inhaled anesthetic action results from disruption of the specific process of synaptic transmission rather than from a receptor-like interaction with a single molecular target.

  6. Anesthetic effects on a process, such as synaptic transmission, may have a different system-level effect depending on placement in the neural circuitry. The circuits that regulate sleep and arousal are well positioned to mediate the hypnotic properties of anesthetics.


General anesthetics were formally introduced into medical practice more than 160 years ago and have been hailed as one of the most significant medical advances of all time. Yet there is still considerable mystery about how the drugs work and how to characterize the state that they produce. This should not be too surprising because a description of the transition from consciousness to unconsciousness necessarily requires an understanding of the former, and the neurobiology of consciousness is still in its infancy. Nevertheless, considerable progress has been made toward the characterization of anesthesia and the potential mechanisms of the drugs that produce it. In this chapter, we summarize the current body of evidence for the mechanism(s) of general anesthesia, with emphasis on the inhaled anesthetics because they are used most commonly. Excellent and comprehensive reviews summarize current knowledge of the molecular, cellular, and in vivo pharmacology,1,2 so we have selected only a few of the putative molecular targets to illustrate the principles and to support the notion that alteration of a neurophysiologic process, rather than the activity of an individual protein, is responsible for the state of general anesthesia.


Mechanistic searches are greatly aided by clear physiologic or behavioral endpoints. Those associated with anesthesia, however, often are ambiguous and arbitrary. Most people associate anesthesia with unconsciousness or "sleep," but the transition to this state often is not apparent to the observer, so the lack of physical movement in response to a noxious stimulus is the most common endpoint associated with the term anesthesia. This is essentially the same endpoint used in Boston more than 160 years ago. But it is immediately apparent that many pathways can lead to such an endpoint, most notably paralysis, which itself is at the end of many pathways. Nevertheless, the ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.


About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessAnesthesiology Full Site: One-Year Subscription

Connect to the full suite of AccessAnesthesiology content and resources including procedural videos, interactive self-assessment, real-life cases, 20+ textbooks, and more

$995 USD
Buy Now

Pay Per View: Timed Access to all of AccessAnesthesiology

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.