Skip to Main Content




  • To gain an understanding of the mechanisms and anticipatory management of brain tissue displacement (herniation) and intracranial hypertension.

  • To understand available brain monitoring devices in measuring ICP and to appreciate their role in guiding early interventions to avoid secondary brain injury as hesitation to monitor intracranial pressure dynamics, and to aggressively pursue ICP management likely accounts for the vast majority of secondary brain injury in patients with reduced level of consciousness.

  • To foster an individualized patient approach in addressing abnormal ICP and flow dynamics within the practice of neurocritical care. Understanding the indications for brain monitoring via real-time parenchymal blood flow, oxygen tension, and chemistry surveillance, as well as mastering the current recommendations in aggressive management approaches toward elevated ICP such as induced hypothermia, suppression of abnormal electrical discharges, and early surgical decompression are necessary tools for the neurocritical care clinician.




In adults, the cranial vault represents a closed, noncompliant structure. Two important exceptions exist in which intracranial compliance is increased. These are at the foramen magnum and craniectomy sites. Craniectomy refers to surgical bone removal to treat refractory intracranial hypertension or as a by-product of neurosurgical decompression for an alternate indication. This removal of bone leaves a palpable, soft, cranial defect covered only by dura, galea, and skin. The brain is distinguished from other organs by the unique challenge of monitoring brain function and intracranial dynamics in a structure enclosed by a bony vault. The noncompliant surrounding bone of the calvarium does not allow for significant volume change of the brain or adjustment of intracranial pressure (ICP) (Fig. 86-1A). As a result, the pressure within the fixed space of the calvarium must be carefully regulated by many mechanisms in order to be maintained within a physiologic range. Disruption of these mechanisms through trauma, space-occupying lesions, or edema leads to dysregulation of the delicate balance required to maintain normal pressure that results in significant neurologic and systemic dysfunction. For instance, the tentorial opening, which separates the supratentorial and infratentorial compartments, encloses, among other structures, the midbrain, posterior cerebral arteries, posterior communicating arteries, oculomotor, and sixth cranial nerves. These structures are frequently damaged during transtentorial herniation, leading to a chain of often irreversible, secondary injuries (Fig. 86-1B).


A. Anatomical relationship of key intracranial structures. The two hemispheres within the supratentorial compartment are separated and stabilized by rigid dura duplications, known as the falx and the tentorium, respectively. These structures become clinically important in the setting of brain herniations; for example, as a late complication of subfalcine herniation the anterior cerebral artery (ACA) is compressed against the free edge of the falx, leading to ACA infarction. Whereas in lateral or descending transtentorial herniation, the posterior cerebral artery (PCA) is displaced inferiorly over the free edge of the tentorium, leading to herniation-induced occipital lobe ...

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.


Create a Free MyAccess Profile

* Required Fields

Note: If you have registered for a MyAccess profile on any of the Access sites, you can use the same MyAccess login credentials across all sites.

Passwords must be between 6 and 40 characters long (no whitespace), cannot contain characters #, &, and must contain:
  • at least one lowercase letter
  • at least one uppercase letter
  • at least one digit

Benefits of a MyAccess Profile:

  • Remote access to the site off-campus on any device
  • Notification of new content via custom alerts
  • Bookmark your favorite content such as chapters, figures, tables, videos, cases and more
  • Save and download images to PowerPoint
  • Self-Assessment quizzes saved for quick review
  • Custom Curriculum access for both instructors and learners

Subscription Options

AccessAnesthesiology Full Site: One-Year Subscription

Connect to the full suite of AccessAnesthesiology content and resources including procedural videos, interactive self-assessment, real-life cases, 20+ textbooks, and more

$995 USD
Buy Now

Pay Per View: Timed Access to all of AccessAnesthesiology

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.