Skip to Main Content




  • The blood [H+] and pH are determined by the strong ion difference (SID), the PCO2, and the total concentration of weak acids, mostly consisting of phosphate and albumin.

  • Both acidemia and alkalemia have potentially harmful physiologic effects, and the presence of either is related to mortality.

  • Most acid-base derangements do not benefit from specific correction of the abnormal pH; instead, the intensivist should focus on detecting and treating the underlying condition.

  • Acid-base disorders are easily characterized using a stepwise approach.

  • Lactic acidosis is the most important acid-base abnormality in ICU patients. Inadequate tissue oxygenation underlies the lactic acidosis in some patients (acute hemorrhage, critical hypoxemia, cardiogenic shock) but probably does not in others (such as the resuscitated septic patient).


Acid-base balance and acid-base disorders are imperfect terms for the determining factors and disease processes that lead to a particular hydrogen ion concentration [H+] in the blood. The methodology used routinely to determine an acid-base disorder is accurate in defining the disturbance. This methodology does not, however, isolate the variables that have led to a particular [H+] in blood. The components of blood that contribute to acid-base balance are


  1. Water

  2. Strong cations (Na+, Mg2+, Ca2+, K+) and strong anions (Cl, lactate)

  3. Bicarbonate ion (HCO3)

  4. Weak acids and their conjugate bases (HA + A = Atot) (Atot is the total independent variable, and HA + A are dependent variables.)

  5. Partial pressure of carbon dioxide (PCO2)

  6. Carbonate ion (CO32)

  7. Hydroxyl ion (OH)

  8. Hydrogen ion (H+)


The difference between the strong cations and strong anions (the strong ion difference [SID]), PCO2, and the total amount of weak acids and their conjugate bases ([Atot]) are the only independent variables.1 All the other components are, by definition, dependent, including [HCO3], [HA], [A], [CO32], [OH], and [H+]. Because the concentrations of each of these six variables are dependent on one or more of the independent variables, we must solve separate equilibrium equations for each. Water itself is minimally dissociated despite the importance of [H+] and can be considered a constant. The six equations are as follows:


Water dissociation:




Weak acid dissociation:




Weak acid conservation:




Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.


About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessAnesthesiology Full Site: One-Year Subscription

Connect to the full suite of AccessAnesthesiology content and resources including procedural videos, interactive self-assessment, real-life cases, 20+ textbooks, and more

$995 USD
Buy Now

Pay Per View: Timed Access to all of AccessAnesthesiology

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.