Skip to Main Content

++

OVERVIEW

++

Kidneys perform a number of essential physiologic functions, including water management, electrolyte homeostasis, acid–base balance, and several neurohumoral and hormonal functions. Anesthesiologists are often called upon to (1) assess and manage perioperative oliguria (Table 18–1); (2) provide renal protection; and (3) use renal function to achieve goals not directly related to urine output, such as decreasing brain swelling or decreasing accumulation of fluid in lung alveoli.

++
Table Graphic Jump Location
Table 18–1Sources of perioperative oliguria.
++

This chapter will briefly discuss drugs used to preserve or manipulate renal function. In general, several drugs are effective diuretics but less effective at providing renal protection.

++

FUROSEMIDE

++

Furosemide was first approved for human use in the United States by the Food and Drug Administration, in July of 1982. It subsequently became a common treatment for congestive heart failure in the late 1980s. Its most common uses are in the treatment of hypertension; mobilization of edema fluid due to renal, hepatic, or cardiac dysfunction; treatment of increased intracranial pressure; and in the differential diagnosis of acute oliguria. Interestingly, furosemide has also long been used in veterinary medicine to prevent thoroughbred racehorses from bleeding through the nose during races.

++

Mechanism of Action

++

Furosemide exerts its diuretic effect by inhibiting the reabsorption of sodium and chloride, primarily in the medullary portions of the ascending limb of the loop of Henle. Protein-bound drug is secreted into the renal tubules and specifically acts on the sodium-chloride-potassium cotransporters on the intraluminal side of the loops of Henle (Figure 18–1). The accumulation of ions inside the lumen of renal tubules that occurs after furosemide administration inhibits the passive reabsorption of potassium, calcium, and magnesium. This results in urinary losses of these ions. Furosemide also stimulates renal production of prostaglandins, resulting in renal vasodilation and increased renal blood flow.

++
Figure 18–1

Location and mechanisms of action for furosemide, mannitol, and fenoldopam. The image shown represents the renal artery, glomerulus, and the descending and ascending loop of Henle. Each box shows a magnified representation of the underlying structure. DA1, dopaminergic receptor.

Graphic Jump Location

Want remote access to your institution's subscription?

Sign in to your MyAccess profile while you are actively authenticated on this site via your institution (you will be able to verify this by looking at the top right corner of the screen - if you see your institution's name, you are authenticated). Once logged in to your MyAccess profile, you will be able to access your institution's subscription for 90 days from any location. You must be logged in while authenticated at least once every 90 days to maintain this remote access.

Ok

About MyAccess

If your institution subscribes to this resource, and you don't have a MyAccess profile, please contact your library's reference desk for information on how to gain access to this resource from off-campus.

Subscription Options

AccessAnesthesiology Full Site: One-Year Subscription

Connect to the full suite of AccessAnesthesiology content and resources including procedural videos, interactive self-assessment, real-life cases, 20+ textbooks, and more

$995 USD
Buy Now

Pay Per View: Timed Access to all of AccessAnesthesiology

24 Hour Subscription $34.95

Buy Now

48 Hour Subscription $54.95

Buy Now

Pop-up div Successfully Displayed

This div only appears when the trigger link is hovered over. Otherwise it is hidden from view.